A Globally Convergent Cutting-Plane Method for
Simulation-Based Optimization with Integer
Constraints

Prashant Palkar, Jeffrey Larson, Sven Leyffer, Stefan Wild

Argonne National Laboratory

March 26, 2018

ssssssssssss

Concentrated Solar Power

Concentrated Solar Power

i Generator
Receiver

/L
Steam Generation L Steam
System Turbine

e
e %
Hellostats@ g}@

Collector
Field

Steam Gen./
Evaporator

Condenser

Power

Tower / Block

Receiver System
Condensate

Tank

Thermal
Storage System

— 2 of 18

Concentrated Solar Power

[SAM Simulation Core (SSC) } Financial model

Molten Salt Power Tower Model

[SolarPILOT Field Design Module] Production Forecast

24 hours
... Weather Forecast

— St
CSP Controller Pricing Forecast throlgh
b . o

CSP Solver

Weather Data
Collector & Receiver

* Optimized plant dispatch schedule

i 3 |4 IS |6 . 4
Thermal Energy Storage ForemRlom(ss ‘slﬂﬁﬁL__
Cycle on 1 1 1 1
CRon [T 11 Jo Jo [
Power Cycle [Standby fo fo fo lo

2 of 18

Concentrated Solar Power

» Continuous design parameters:
tower height, receiver diameter, receiver height, ...

> Integer design parameters:
number of O&M staff, wash crews, and receiver panels

Unrelaxable MIP-DFO

minimize ppaPrice(S(z))
T
subject to FluxMax(S(z)) < K
z€X CZIxRP

» Unrelaxable integer variables

» Computationally expensive simulation S(x)

a& - 3 of 18

Problem formulation

Derivative-Free Optimization with Unrelaxable Integers
minimize f(S(z)) subjecttoxr e X CZF x R?
x

1. Evaluation involves S(x) numerical simulation
(computationally expensive)

» derivatives V.S unavailable or expensive to compute
» single evaluation of S(x) can take minutes/hours/days

= cannot use Outer Approximation

2. Unrelaxable integers, e.g. # receiver panels
» Unrelaxable: simulation cannot run at fractional values!

= cannot use Branch-and-Bound

o 4 of 18

Problem formulation

Derivative-Free Optimization with Unrelaxable Integers
minimize f(S(z)) subjecttoxr e X CZF x R?
x

1. Evaluation involves S(x) numerical simulation
(computationally expensive)

» derivatives V.S unavailable or expensive to compute
» single evaluation of S(z) can take minutes/hours/days

= cannot use Outer Approximation

2. Unrelaxable integers, e.g. # receiver panels
» Unrelaxable: simulation cannot run at fractional values!

= cannot use Branch-and-Bound

Open problem (MINLP Oberwolfach, 2015)

Solve MI-DFO for convex f(S(x)) without complete enumeration!

a& - 4 of 18

.
Pattern-search for continuous DFO

Positive
spanning set of

directions
|

Select step A > 0 and starting point x

repeat
From z, search positive-spanning set of step A

if better point Z found then
| Set z := Z; Increase A

else
L Decrease A

until convergence;

Convergence depends on spanning set properties and smoothness of
the function.

o 5 of 18

Pattern-Search Techniques for DFO

o 6 of 18

Pattern-Search Techniques for DFO

o 6 of 18

Pattern-Search Techniques for DFO

o 6 of 18

Pattern-Search Techniques for DFO

Pattern-Search Techniques for DFO

o 6 of 18

Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):

» User-defined discrete neighborhood

o 7 of 18

Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):

» User-defined discrete neighborhood

» Declare "mesh-isolated minimizer” if no local improvement

o 7 of 18

 EEEEEEEEE—————S
Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):
» User-defined discrete neighborhood

» Declare "mesh-isolated minimizer” if no local improvement

o 7 of 18

 EEEEEEEEE—————S
Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):
» User-defined discrete neighborhood

» Declare "mesh-isolated minimizer” if no local improvement

o 7 of 18

 EEEEEEEEE—————S
Pattern-Search Algorithm for Integer DFO
Proposed by Audet & Dennis (2001):
» User-defined discrete neighborhood

» Declare "mesh-isolated minimizer” if no local improvement

» Any (y1,y2) € Z* with 2y = v is optimal

o 7 of 18

Discussion

Open problem

Can we guarantee a minimizer of a convex f(z) when z is integer?

8 of 18

1D

minimize f(x), subjecttoxz € Z"
x

and assume f(x) convex

9 of 18

1D

minimize f(x), subjecttoxz € Z"
T
and assume f(x) convex

A

a 9 of 18

1D

minimize f(x), subjecttoxz € Z"
T
and assume f(x) convex

A

a 9 of 18

1D

minimize f(x), subjecttoxz € Z"
x
and assume f(x) convex

A

. underestimator for convex, integer DFO!

9 of 18

2D

10 of 18

2D

.

10 of 18

2D

10 of 18

2D

2D

2D

2D

10 of 18

2D

2D

2D

2D

2D

10 of 18

2D

10 of 18

2D

10 of 18

2D

2D

10 of 18

2D

10 of 18

Underestimating f

Formulate piecewise underestimator as MILP
» Interpolation points: X := {2! € Z"}, |X| >n+1
» Function values: f?:= f(z%) for 2 € X

» %:= (i1,...,%+1) multi-index for n + 1 distinct i; € % with
1< < ~~'a7;n+1 < |X|

Interpolation Cuts

For X% := {&% : i; € i} obtain cut
(cz)Ta:-I-bz
. only valid in cones ... by solving linear

system:)
xid] -

11 of 18

Underestimating f

Lemma: Underestimating Property

f(z) convex and X? = {1, ..., xi"+1} poised, then if follows that
3 . 3 n+1 . 3
f(x) > (HTz + b, VeeU®:= U cone (m’j - XZ> ,
j=1

where cone (wij - X’) is the cone with vertex 7 € X* & rays

xli — g

—_— 12 of 18

 EEEEEEEEEE———S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)
» Binary 2% =1 if and only if 2 € cone {a:iﬂ' — Xi} , forijed

o 13 of 18

 EEEEEEEEE—————S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)
» Binary 2% =1 if and only if 2 € cone {aziﬂ' — Xi} , forijed

3 . n+1 A
> Cutn > ()T +b" — M;(1- Z 2'7) for big-M; >0
j=1

o 13 of 18

 EEEEEEEEE—————S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)
» Binary 2% =1 if and only if 2 € cone {aziﬂ' — Xi} , forijed
3 . n+1 A
> Cutn > ()T +b" — M;(1- Z 2'7) for big-M; >0
j=1
» SOS-1 constraint: at most one cone, z% < 1, active

o 13 of 18

 EEEEEEEEE—————S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)
» Binary 2% =1 if and only if 2 € cone {I‘ij - X’i} , forijed
. . ntl
» Cutn > (MTz40* - M;(1 - Z 2'7) for big-M; >0
j=1
» SOS-1 constraint: at most one cone, z% < 1, active
» Any point x is linear combination of extreme rays (W (X) set
of all poised subsets)
z=a% + Y N (aV —a't), Vij€i, Vie W(X)
=1,
1]

o 13 of 18

 EEEEEEEEE—————S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)

» Binary 2% =1 if and only if 2 € cone {xij — X’i} , forijed

. . ntl
» Cutn > (MTz40* - M;(1 - Z 2'7) for big-M; >0
j=1

SOS-1 constraint: at most one cone, z% < 1, active
Any point z is linear combination of extreme rays (W (X) set
of all poised subsets)

v

v

n+1) ')

z=a% + Y N (aV —a't), Vij€i, Vie W(X)
=1,
I#]

v

Indicate = € cone (wii - Xi> by making)\;j > —My(1 — 2%)

o 13 of 18

 EEEEEEEEE—————S
Solving the subproblem - MILP formulation

Modeling membership in cones (using nn > f(z) epigraph trick)
» Binary 2% =1 if and only if = € cone {xij — X’i} , forijed
i i n+1 A
» Cutn > (MTz40* - M;(1 - Z 2'7) for big-M; >0
j=1
» SOS-1 constraint: at most one cone, 2% < 1, active
» Any point x is linear combination of extreme rays (W (X) set
of all poised subsets)
z=a%+ Y N (aV —a't), Vij€i, Vie W(X)
=1,
1]

> Indicate = € cone (wii — Xi> by making)\;j > —My(1 — 2%)

. models 24 = 1 = x € cone {:Jcij - X"} fori; €4 ... reverse

harder
13 of 18

.
Solving the subproblem - MILP formulation

Now to show z € cone {xii — Xi} = i =1
> A;j > 0 implies w?j =1 and A;j < —¢y, implies w?j =0
)\;j < —ey+ M,\wfj ...tiny-€ and big-M

. can choose optimal tiny-¢, big-M by solving LPs
» At least one w variables is zero if corresponding z is zero:
n+1)
nz' < Z wl” Sn—l—kzif'
I=1, I£j

MILP subproblem model

| X| . : .
» Check (n 1 poised sets at iteration k

» Formulation needs O (n?) binary variables per poised set

& = 14 of 18

An Alternative Master Problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

o 15 of 18

An Alternative Master Problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

» Key idea: work in space of original integers, x € Z"
(no additional variables or constraints)

» Replace MILP by look-up-table of underestimator

» Update look-up-table when new points (and therefore new
cuts) are available

An Alternative Master Problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

» Key idea: work in space of original integers, x € Z"
(no additional variables or constraints)

» Replace MILP by look-up-table of underestimator
» Update look-up-table when new points (and therefore new
cuts) are available

Dense/small linear algebra solves = Fast

An Alternative Master Problem
Challenges of MILP Master model

» MILP model exponential in number of interpolation points
» MILP representation is very weak: uses big-M and tiny-¢

= Commercial solvers cannot solve large instances

Replacing CPLEX Solve by Look-Up Table

» Key idea: work in space of original integers, x € Z"
(no additional variables or constraints)

» Replace MILP by look-up-table of underestimator
» Update look-up-table when new points (and therefore new
cuts) are available

Dense/small linear algebra solves = Fast ... but not fast enough

Algorithm 1: Look up algorithm

input: Lower bound nffor each point in 2; Points X with
X| 20+ 1; f = min [(z)
;€

Algorithm 1: Look up algorithm

input: Lower bound nffor each point in 2; Points X with
X| 20+ 1; f = min [(z)
;€

while f > minn do

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)

while f > minn do

C' = {subsets of n + 1 points in X'}

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)

while f > minn do

C' = {subsets of n + 1 points in X'}

for i € C do

if X%is poised then

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)

while f > minn do

C' = {subsets of n + 1 points in X'}

for i € C do

if X%is poised then
Find points in £ in one of the cones of X*

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)

while f > minn do

C' = {subsets of n + 1 points in X'}

for i € C do

if X%is poised then
Find points in £ in one of the cones of X*
Update n

Algorithm 1: Look up algorithm

input: Lower bound nffor each point in 2; Points X with
X| 20+ 1; f = min [(z)
;€

while f > minn do

C' = {subsets of n + 1 points in X'}
for i € C do
if X%is poised then
Find points in £ in one of the cones of X*
Update n
Add z* = argminn and update f
| e

Algorithm 1: Look up algorithm

input: Lower bound nffor each point in 2; Points X with
X| 20+ 1; f = min [(z)
;€

while f > minn do

C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = ar([e X*])
if X is poised then
Find points in £ in one of the cones of X*
Update n
Add z* = argminn and update f
| e

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in £ in one of the cones of X*
Update n

Add z* = argminn and update f
e

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in € in one of the cones of X? using @
Update n

Add z* = argminn and update f
e

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in € in one of the cones of X? using @
Update 7 using Q

Add z* = argminn and update f
e

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in £ in one of the cones of X using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
e

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in £ in one of the cones of X using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
z€Qn<f

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C = {subsets of n points in X} @ {z*}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in £ in one of the cones of X using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
z€Qn<f

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|> 1; f = mi ;
[|27+ 1 f= min f(z)
while f > minn do
C' = {subsets of n + 1 useful points in X'}
for i € C do
[Q, R] = qr([e X*])
if X? is poised using R then
Find points in £ in one of the cones of X using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
z€Qn<f

Algorithm 1: Look up algorithm

input: Lower bound 7 for each point in ; Points X with
X|>n+1; f=mi ;
[|27+ 1 f= min f(z)

while f > minn do

Generate a sufficient set C' of subsets of n + 1 points
for i € C do

Q. R) = ar(fe X¥))

if X? is poised using R then
Find points in £ in one of the cones of X using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
z€Qn<f

Algorithm 1: Look up algorithm
input: Lower bound 7 for each point in §2; Points X with
IX|>n+1,; f= mi%f(xi)
;€

while f > minn do
Generate a sufficient set C' of subsets of n + 1 points
for i € C do

Q. B] = ar([e X))

if X? is poised using R then
Find points in € in one of the cones of X? using Q
Update 7 using QQ where n < f

Add z* = argminn and update f
zeQn<f

Open problem

Given a set of points X on the integer lattice, is there a way to
generate all subsets of size n + 1 without another in the interior?

16 of 18

Results Abhishek Function

Convex quadratic for which pattern-search failed ...
n=3

Optimality gap at each iteration |— [-2,2"
- [-33"
- [74;4111

o 17 of 18

Results Abhishek Function

Convex quadratic for which pattern-search failed ...

n=3

seconds

10

05}

0.0

Walltime for each iteration — -2,
-39
- [74;4111

20: 40

17 of 18

Results Abhishek Function

Convex quadratic for which pattern-search failed ...

n=4

2000

Optimality gap at each iteration

- [72’2111
_ (=33

17 of 18

Results Abhishek Function

Convex quadratic for which pattern-search failed ...
n=4

Walltime for each iteration — -2,

—_— 33"

600

400

seconds

200}

0 50 100

o 17 of 18

Future

» We likely aren’t using convexity as much as we possibly can.

» How to certify (local) optimality when f is nonconvex?

o 18 of 18

